Splitter: Mining Fine-Grained Sequential Patterns in Semantic Trajectories

نویسندگان

  • Chao Zhang
  • Jiawei Han
  • Lidan Shou
  • Jiajun Lu
  • Thomas F. La Porta
چکیده

Driven by the advance of positioning technology and the popularity of location-sharing services, semantic-enriched trajectory data have become unprecedentedly available. The sequential patterns hidden in such data, when properly defined and extracted, can greatly benefit tasks like targeted advertising and urban planning. Unfortunately, classic sequential pattern mining algorithms developed for transactional data cannot effectively mine patterns in semantic trajectories, mainly because the places in the continuous space cannot be regarded as independent “items”. Instead, similar places need to be grouped to collaboratively form frequent sequential patterns. That said, it remains a challenging task to mine what we call fine-grained sequential patterns, which must satisfy spatial compactness, semantic consistency and temporal continuity simultaneously. We propose SPLITTER to effectively mine such fine-grained sequential patterns in two steps. In the first step, it retrieves a set of spatially coarse patterns, each attached with a set of trajectory snippets that precisely record the pattern’s occurrences in the database. In the second step, SPLITTER breaks each coarse pattern into fine-grained ones in a top-down manner, by progressively detecting dense and compact clusters in a higher-dimensional space spanned by the snippets. SPLITTER uses an effective algorithm called weighted snippet shift to detect such clusters, and leverages a divide-and-conquer strategy to speed up the top-down pattern splitting process. Our experiments on both real and synthetic data sets demonstrate the effectiveness and efficiency of SPLITTER.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Mining of Regional Movement Patterns in Semantic Trajectories

Semantic trajectory pattern mining is becoming more and more important with the rapidly growing volumes of semantically rich trajectory data. Extracting sequential patterns in semantic trajectories plays a key role in understanding semantic behaviour of human movement, which can widely be used in many applications such as location-based advertising, road capacity optimisation, and urban plannin...

متن کامل

Mining Semantic Sequential Patterns from Geo-tagged Photos

Social media data associated with geographic location and time information reflect people footprint in real world. Abundance of geo-referenced content represents a massive opportunity to understanding of human geographic mobility behaviors. Most trajectory mining research from geo-enabled social media data focus on spatial geometric features. Integrating trajectory analysis with semantic inform...

متن کامل

VerbOcean: Mining the Web for Fine-Grained Semantic Verb Relations

Broad-coverage repositories of semantic relations between verbs could benefit many NLP tasks. We present a semi-automatic method for extracting fine-grained semantic relations between verbs. We detect similarity, strength, antonymy, enablement, and temporal happens-before relations between pairs of strongly associated verbs using lexicosyntactic patterns over the Web. On a set of 29,165 strongl...

متن کامل

C-safety: a framework for the anonymization of semantic trajectories

The increasing abundance of data about the trajectories of personal movement is opening new opportunities for analyzing and mining human mobility. However, new risks emerge since it opens new ways of intruding into personal privacy. Representing the personal movements as sequences of places visited by a person during her/his movements semantic trajectory poses great privacy threats. In this pap...

متن کامل

POISketch: Semantic Place Labeling over User Activity Streams

Capturing place semantics is critical for enabling location-based applications. Techniques for assigning semantic labels (e.g., “bar” or “office”) to unlabeled places mainly resort to mining user activity logs by exploiting visiting patterns. However, existing approaches focus on inferring place labels with a static user activity dataset, and ignore the visiting pattern dynamics in user activit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PVLDB

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014